التفكير الرياضي يبدأ في السنوات الأولى بالحوار واستكشاف العالم الحقيقي

img

ترجمة: عدنان أحمد الحاجي

من الطبيعي أن نعتقد أن الرياضيات تتعلق بالأرقام في المقام الأول، في المدرسة، نتعلم أولاً كيف نقرأ الأرقام ثم نقضي الكثير من الوقت في كتابتها ونجري عمليات حسابية عليها على الورق.

بالطبع، تعد الأرقام (الصيغ المكتوبة للأرقام)، إلى جانب الرموز الأخرى، أمرا بالغ الأهمية لتوصيل الأفكار عن  المقادير والتعبير عن كيف ترتبط ببعضها البعض، إن مدى تشجيع الآباء، والمعلمين للأطفال على التفكير الرياضي في السنوات التي تسبق دخولهم الصف الأول مهم للغاية بالنسبة لأسس الحساب/الرياضيات.

ولكن ما يبدو أنه لم يفهم عن الرياضيات المدرسية، هو أن الرياضيات تدور في الأساس حول التفكير.

بدلا من مناقشة ما إذا كان “التعلم بالاكتشاف” أو “الأساسيات” أكثر أهمية للأطفال، هناك حاجة إلى مزيد من الاهتمام لدعم تطوير تفكير الأطفال في الكميات والفضاء، قدر كبير من الأبحاث الآن تبين أن نجاح الأطفال في المدرسة يعتمد على مدى تشجيع الآباء (الأب أو الأم آو كليهما).

والمعلمين  إياهم على التفكير الرياضي في السنوات قبل دخولهم الصف الأول.

من الممكن -حتى من الضروري-التركيز على تفكير الأطفال في القدرة الحسابية (امتلاك المهارة والثقة والقدرة على استخدام الأعداد، والمقاربات الحسابية لحل المسائل في العالم الحقيقي، وفي كل جوانب الحياة)، في السنوات الأولى حتى يبدأوا تعليمهم الرسمي بداية ناجحة.

‎حوار حول الرياضيات
تخيل أنك تتحاور مع مجموعة أطفال في مستوى رياض الأطفال، تقرأ لهم قصة عن طفلين في منزل جدتهما والتي كانت توزع عليهما أربع قطع من البسكويت بالتساوي.

يمكنك إشراك أطفال الروضة  في مناقشة عدد قطع البسكويت التي سيحصل عليها كل طفل من هاذين الطفلين، بعض الأطفال يخرجون قطع بسكويت من حقائبهم، ويقومون بالتقسيم (تمثيل المشهد)، أطفال آخرون يرسمون صورا ليفكروا في المسألة.

ثم تسألهم  ماذا سيحدث لو جاء طفلان آخران إلى الطاولة، هل سيحصل كل طفل على أكثر أو أقل أو نفس عدد قطع البسكويت؟ كيف عرفت ذلك؟

في مثل هذه الحالة، ينخرط الأطفال في مناقشة حية عن التكافؤ وتقسيم وتوزيع الكميات ومقارنتها، هناك فوائد عديدة لهذه النوع من الحوار، من الواضح أن هناك مزايا ذهنية واجتماعية للأطفال في التعبير عن تفكيرهم وتبريره.

ومع ذلك، فإن الفكرة هنا هي أن الأطفال يتفاعلون مع المفاهيم الأساسية للمنهج الأبتدائي.

مفاهيم مثل معنى القسمة وأهمية التقسيم المتساوي، وما يحدث لكل سهم عندما يحصل المقسوم عليهم  (عدد المساهمين في القسمة) على أسهم أكثر، من المهم أيضا ملاحظة أن الأطفال يتعاملون  بجد، مع أفكار رياضية مهمة بدون كتابة  تمثيلات منهجية، مثل الأرقام أو علامات القسمة (÷) أو علامة التساوي (=).

التفكير في المفاهيم والتفكير في ما تعنيه هذه المفاهيم هو في صميم الرياضيات، مثل هذا النشاط لم يكن ممكنا في السابق من السنوات (10)، بل إنه ضروري.

يجب أن يكون حاضرا طوال سنوات التطور الرياضي للطفل في المدرسة وخارجها، أفكار رياضية للأطفال، يجد الطلاب والمتعاونون معنا في مختبرنا البحثي،
‎فيجامعة كونكورديا ‪Concordia‬  أن الأطفال قادرون على الانخراط في العديد من الأفكار الكبيرة التي تغطي مناهج الرياضيات: الضرب والقسمة والتقدير والتكافؤ  (التساوي بين كميتين مثلاً) وقيمة العدد في الخانة، والكسور وحتى المنطق الجبري.

هذا لا يعني أن أفكار هؤلاء الأطفال ناضجة تماما أو أنهم بارعون في التعبير، عن أفكارهم بنحو منهجي، في الواقع، هذه الأفكار تنبثق من استكشافات الأشياء والأفعال في سياقات العالم الحقيقي.

توسيع وتنقيح أفكار الأطفال البديهية، وبالتالي الأفكار الرياضية العميقة، وإعطاؤهم الرموز لتمثيل هذه الأفكار بشكل أكثر كفاءة، هو الهدف الأساسي لتدريس الرياضيات في المدرسة، على سبيل المثال، يمكن لطفلة من أطفال رياض الأطفال أن تفهم أنه إذا كان لديها خمس ملاعق، وصديقتها لديها خمس ملاعق، فسيكون لديهما نفس العدد من الملاعق.

يمكن لمعلم  الصف الأول أن يظهر لهذه الطالبة رمزا للتعبير، عن التكافؤ العددي باستخدام رمز علامة التساوي (5 = 5).

يمكن للطفل البالغ من العمر خمس سنوات أن يوضح كيف يمكن لثلاثة أشخاص، أن يتقاسموا لوح شوكولاتة واحد بالتساوي عن طريق تقسيم مستطيل إلى ثلاثة أجزاء متساوية، أو، يمكن لمعلم الصف الأول أن يظهر لهذا الطفل كيف يعبر عن الكمية التي يتلقاها كل شخص، بالكلمات ك “ثلث”، ورقميا كـ “1/3”.

هذه الرموز، والتعميمات التي تمثلها، يمكن بدورها أن تستخدم لبناء أفكار أكثر تعقيدا، وبالتالي الكشف عن الطبيعة التراكمية والمتكررة لتعلم الرياضيات.

بدون التركيز على المعنى في جميع مستويات التدريس، الأطفال الذين يقضون وقتا في المدرسة، ويقومون بإجراء عمليات حسابية على هذه الأرقام على الورق، مثلا، فمن غير المرجح أن يطوروا فهمهم للرياضيات، السنوات الأولى، نحن نعلم الآن أنه إذا لم يتعرض الأطفال لأفكار رياضية (متعلقة بالرياضيات) مهمة من خلال النشاط والحوار في السنوات الأولى.

فسيفتقرون إلى أسس مهمة متطلبة للصف الأول الإبتدائي، والأهم من ذلك، ستتزايد عليهم  صعوبة اللحاق بأقرانهم الأكثر استعدادا في المدرسة.

يعتبر هذا التأثير بارزا للعديد من الأطفال الذين يعيشون في ظروف فقر، والذين يتعرضون بشكل خاص لخطر صعوبات القدرة الحسابية المبكرة (8, 9)، غالبا ما يفتقر هؤلاء الأطفال إلى الكفاءات (المهارات) التأسيسية الرئيسية عندما يدخلون رياض الأطفال ولم يتعرضوا إلاّ للقليل  من “حوار  الحساب/ الرياضيات” في المنزل.

على الرغم من أن الوقت لم يفت أبدا لمساعدة الطفل الذي يعاني من صعوبات في الرياضيات، فإن فرص سد الفجوة تصبح أقل وأقل مع تقدم الأطفال في النظام المدرسي.

إعداد الأطفال الصغار لتعلم الرياضيات في المدرسة يعني إجراء حوار  معهم حول الأفكار الرياضية، ولكن هذا لا يعني، على سبيل المثال، تكييف منهج الصف الأول ليلائم بيئة الطفولة المبكرة، بل يعني بالأحرى إرساء أسس من خلال إشراك الأطفال في الأفكار التي ستسمح بتطوير كفاءة (مهارة)الرياضيات طوال فترة دراستهم.

بهذه الطريقة، لا يوجد فرق نوعي بين القدرة الحسابية (8, 9) في بيئات  الطفولة المبكرة والرياضيات في المدرسة الابتدائية.

الخطوة الأولى في إشراك الأطفال الصغار في مفاهيم القدرة الحسابية  الأساسية هي تقدير الاستمرارية في تطور الأطفال ، والتي ستوفر رؤية أوضح حول كيف نساعدهم في أي عمر.

الكاتب عدنان أحمد الحاجي

عدنان أحمد الحاجي

مواضيع متعلقة

اترك رداً